Bayesian modeling for large spatial datasets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Modeling for Large Spatial Datasets.

We focus upon flexible Bayesian hierarchical models for scientific data available at geo-coded locations. Investigators are increasingly turning to spatial process models to analyze such datasets. These models are customarily estimated using Markov Chain Monte Carlo (MCMC) methods, which have become especially popular for spatial modeling, given their flexibility and power to fit models that wo...

متن کامل

Likelihoods for Large Spatial Datasets

Datasets in the fields of climate and environment are often very large and irregularly spaced. To model such datasets, the widely used Gaussian process models in spatial statistics face tremendous challenges due to the prohibitive computational burden. Various approximation methods have been introduced to reduce the computational cost. However, most of them rely on unrealistic assumptions of th...

متن کامل

Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial datasets.

SUMMARY This article expands upon recent interest in Bayesian hierarchical models in quantitative genetics by developing spatial process models for inference on additive and dominance genetic variance within the context of large spatially referenced trial datasets. Direct application of such models to large spatial datasets are, however, computationally infeasible because of cubic-order matrix ...

متن کامل

Approximate Bayesian inference for large spatial datasets using predictive process models

This article addresses the challenges of estimating hierarchical spatial models to large datasets. With the increasing availability of geocoded scientific data, hierarchical models involving spatial processes have become a popular method for carrying out spatial inference.

متن کامل

Meta-Kriging: Scalable Bayesian Modeling and Inference for Massive Spatial Datasets

Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations becomes large. There is a burgeoning literature on approaches for analyzing large spatial datasets. In this article, we propose a divide-and-conquer strategy within the Bayesian paradigm. We partition the data into subsets, analyze each subset using a Bayesian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wiley Interdisciplinary Reviews: Computational Statistics

سال: 2011

ISSN: 1939-5108

DOI: 10.1002/wics.187